ZFA STRUCTURAL ENGINEERS

PRELIMINARY NOT FOR CONSTRUCTION

san francisco silicon valley sacramento santa rosa napa

Davidson Middle School Mechanical Upgrades Structural Calculations

San Rafael, CA ZFA Project Number: 21650

Structural Calcs_V1

January 7, 2022

Prepared For: QKA Santa Rosa, CA

Prepared By: Benny Cope, Designer Dudley Mei, PE, Engineer Chris Warner, SE, Principal-in-Charge Santa Rosa, California

TABLE OF CONTENTS

Description

Page

Structural Narrative	3
Design Criteria	4-9
Flat Weights	10
Shear Wall Capacity Check	11
Anchorage	12-37

Davidson MS HVAC

STRUCTURAL NARRATIVE

The structural calculations contained herein reflect mechanical modifications at the annex, maker space, band room and music room of Davidson Middle School. The effective seismic weights of the buildings will not increase by 10% and the effective seismic weight tributary to each shear wall line will not increase by more than 5%, hence no structural rehabilitation is required per CAC 4-309(c).

At the annex, new intake louvers at the roof will not increase the total gravity load by more than 5%, therefore (E) framing is okay. A widened intake louver at an (E) shear wall will not reduce its stiffness by more than 5% and therefore does not require rehabilitation per CAC 4-309. Anchorage for a wall-mounted electrical panel in the annex was also calculated.

Additional anchorage calculations are provided for fan coil units, pipe supports and duct supports.

Calculations were not required for furnace, condensing and HP units which have a center of gravity less than four feet above ground and weigh under four-hundred pounds per the exemptions of CBC 1617A.1.18.

DETAILED DESIGN CRITERIA

BUILDING CODE

				1
Governing Code:	2019 California Building Code	I	4	h
Authority Having Jurisdiction:	DSA		A	1
Local Codes or Amendments:	0	17	X	X

BUILDING SYSTEM DESCRIPTION

No. Stories:	1
Footprint:	Varies ft ²
Floor Area:	Varies ft ²
Roof Area:	Varies ft ²
Mean Building Height:	11 ft
Roof Pitch:	Varies :12

Building Use:	Educational
Gravity System:	Wood Bearing Walls
Diaphragm System:	Plywood Sheathing
Foundation System:	Concrete Footings

DETAILED DESIGN CRITERIA

SEISMIC DESIGN PARAMETERS

ASCE 7-16 Reference UNO:

Analysis Procedure Used:	E	EQ (Equiv. Lat. Force, 12.8)		Section 12.6
Latitude:	37.9659 deg	Longitude:	-122.5249 deg	
Risk Category:	III	Educ	ational	Table 1.5-1
I _E =	1.25	Importance F	actor, Seismic	Table 1.5-1
I _P =	1.00	Importance Factor, No	nstructural Components	13.1.3
Soil Site Class =	D (by default)	Per Geotech Report,	Site Class D otherwise	Table 20.3-1
S _S =	1.500 g	Mapped spectral respons	se acceleration parameter	USGS
S ₁ =	0.600 g	Mapped spectral respons	se acceleration parameter	USGS
F _a =	1.2	Site co	efficient	Table 11.4-1
F _v =	1.7	Site co	efficient	Table 11.4-2
S _{DS} =	1.200 g	Design spectral respons	e acceleration parameter	11.4-3
S _{D1} =	0.680 g	Design spectral respons	e acceleration parameter	11.4-4
Seismic Design Category:	D			Section 11.6
Building System, N-S:	A. BEARING WALL SYSTEMS	15. Light-framed (wood) structural panels rate	walls sheathed with wood d for shear resistance	Table 12.2-1
Building System, E-W:	A. BEARING WALL SYSTEMS	15. Light-framed (wood) structural panels rate	walls sheathed with wood d for shear resistance	Table 12.2-1
Diaphragm=	Flexible Diaphragm	Plywood	Sheathing	
$\rho_{(N-S)} =$	1.0	Redundanc	y factor, N-S	12.3.4
$\rho_{(E-W)} =$	1.0	Redundanc	y factor, E-W	12.3.4
R _(N-S) =	6.50	Response modifica	tion coefficient, N-S	Table 12.2-1
R _(E-W) =	6.50	Response modifica	tion coefficient, E-W	Table 12.2-1
$\Omega_{o(N-S)} =$	2.50	Overstrengt	h factor, N-S	Table 12.2-1
$\Omega_{o(E-W)} =$	2.50	Overstrengt	h factor, E-W	Table 12.2-1
C _{d(N-S)} =	4.00	Deflection amplif	ication factor, N-S	Table 12.2-1
C _{d(E-W)} =	4.00	Deflection amplifi	cation factor, E-W	Table 12.2-1
T _(N-S) =	0.121 sec	Approximate Funda	amental Period, N-S	Section 12.8.2
$T_{(E-W)} =$	0.121 sec	Approximate Funda	amental Period, E-W	Section 12.8.2
T _L =	8 sec	Long Period Tr	ansistion Period	USGS
$V_{(N-S)}$ (ULT) =	0.231 *W	Base Shear	, N-S, LRFD	Section 12.8 or 12.14
$V_{(N-S)}$ (ASD) =	0.162 *W	Base Shea	r, N-S, ASD	Section 12.8 or 12.14
$V_{(E-W)}$ (ULT) =	0.231 *W	Base Shear	, E-W, LRFD	Section 12.8 or 12.14
V _(E-W) (ASD) =	0.162 *W	Base Shear	,E-W, LRFD	Section 12.8 or 12.14
Structural Irregularities	Horizontal: None			Table 12.3-1
	Vertical: None			Table 12.3-2

WIND DESIGN PARAMETERS

Wind Method Used:			Directional Procedure	Chapter 27
Basic Wind Speed =	98	MPH	Ultimate Design Wind Speed (3 second gust)	Figure 26.5-1A,B or C
Exposure Category:	C	;	Open Terrain	26.7.3
K _{zt} =	1.0	00	Topographic Factor	26.8
K _d =	0.85	Buildings	Directionality Factor	Table 26.6-1

Engineer: BVC; DM 1/3/2022

DETAILED DESIGN CRITERIA

MATERIAL STRENGTH AND SPECIFICATIONS

STEEL CONNECTORS:

Shear stud connectors, f _u =	65 ksi	ASTM A108
Machine Bolts, f _u =	58 ksi	ASTM A307
High Strength Bolts, f _u =	120 ksi	ASTM A325
Anchor Bolts, f _y =	36 ksi	ASTM F1554, Grade 36 or ASTM A307
Anchor Bolts, f _u =	58 ksi	ASTM F1554, Grade 36 or ASTM A307
Threaded Rods, f _y =	36 ksi	ASTM F1554, Grade 36 or ASTM A307
Threaded Rods, f _u =	58 ksi	ASTM F1554, Grade 36 or ASTM A307
Weld, F _{EXX} =	70 ksi	Weld Strength

WOOD CONSTRUCTION:

6x Posts, F _b =	1200 psi	Douglas Fir #1
6x Beam, F _b =	1350 psi	Douglas Fir #1
4x Posts & Beams, F _b =	1000 psi	Douglas Fir #1
2x Joists & Rafters, F _b =	900 psi	Douglas Fir #2
2x Studs, F _b =	900 psi	Douglas Fir #2
Sheathing	PS1 /	(PS2
Connections	Simpson S	Strong-Tie
Glued-Laminated Beam (GLB), $F_b =$	2400 psi	24F-V4 (DF/DF) simple span, 24F-V8 (DF/DF) continuous span
Exterior GLB, F _b =	2000 psi	20F-V12 (AC/AC) simple span, 20F-V13 (AC/AC) continuous span
Parallel Strand Lumber (PSL), F _b =	2900 psi	Grade 2.0E
Laminated Veneer Lumber (LVL), $F_b =$	2600 psi	Grade 1.9E
Laminated Strand Lumber (LSL), F _b =	1700 psi	Grade 1.3E

Search Information

Address:	280 Woodland Avenue San Rafael, California 94901
Coordinates:	37.965895, -122.524903
Elevation:	7 ft
Timestamp:	2021-01-26T23:46:02.257Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	Ш
Site Class:	D-default

Basic Parameters

Name	Value	Description
SS	1.5	MCE _R ground motion (period=0.2s)
S ₁	0.6	MCE _R ground motion (period=1.0s)
S _{MS}	1.8	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.2	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
Fv	* null	Site amplification factor at 1.0s
CRS	0.921	Coefficient of risk (0.2s)
CR ₁	0.906	Coefficient of risk (1.0s)
PGA	0.523	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.627	Site modified peak ground acceleration
TL	12	Long-period transition period (s)
SsRT	1.733	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.881	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)

1/26/2021		ATC Hazards by Location	
SsD	1.5	Factored deterministic acceleration value (0.2s)	
S1RT	0.687	Probabilistic risk-targeted ground motion (1.0s)	
S1UH	0.758	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)	
S1D	0.6	Factored deterministic acceleration value (1.0s)	
PGAd	0.523	Factored deterministic acceleration value (PGA)	
* See See	ction 11.4.8		

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Search Information

Address:	280 Woodland Avenue San Rafael, California 94
Coordinates:	37.965895, -122.524903
Elevation:	7 ft
Timestamp:	2021-01-26T23:46:55.686Z
Hazard Type:	Wind

ASCE 7-16		ASCE 7-10		ASCE 7-05	
MRI 10-Year	63 mph	MRI 10-Year	72 mph	ASCE 7-05 Wind Speed	85 mph
MRI 25-Year	70 mph	MRI 25-Year	79 mph		
MRI 50-Year	74 mph	MRI 50-Year	85 mph		
MRI 100-Year	78 mph	MRI 100-Year	91 mph		
Risk Category I	86 mph	Risk Category I	100 mph		
Risk Category II	91 mph	Risk Category II	110 mph		
Risk Category III	98 mph	Risk Category III-IV	115 mph		
Risk Category IV	102 mph				

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Engineer: BVC; DM 1/3/2022

GRAVITY / SEISMIC FLAT WEIGHT TAKEOFF (PSF)

FLAT ROOF @ ANNEX

CBC Live Load Category: 26. Roof: ordinary Slope: 0.00:12

Balcony?: No [Table 1607.1]

Joists	Girders	Colur

Material	Thickness (in)	Sloped	Deck	Joists	Girders	Columns	Seismic
Roofing: Cap Sheet			3.0	3.0	3.0	3.0	3.0
Sheathing: 1/2 in. OSB			1.7	1.7	1.7	1.7	1.7
Decking: Leveling Lightweight Conc t =	1.5		15.0	15.0	15.0	15.0	15.0
Insulation: "Soft": Loose Fill, Blown-In, & Batt t =	3		0.6	0.6	0.6	0.6	0.6
Ceiling: 1/2 in. Gypsum Board				2.2	2.2	2.2	2.2
Framing:				0.0	0.0	0.0	0.0
Framing: DF-L 3x12 @ 16"oc					5.5	5.5	5.5
Framing:						0.0	0.0
MEP:			0.0	0.0	0.0	0.0	0.0
MEP: Typical			2.0	2.0	2.0	2.0	2.0
MEP: Solar			3.0	3.0	3.0	3.0	3.0
Miscellaneous			1.5	1.5	1.5	1.5	1.5
Dead Load			26.8	29.0	34.5	34.5	34.5
Dead Load - Horiz Projection			26.8	29.0	34.5	34.5	34.5
Partitions (Office Buildings)		No	0.0	0.0	0.0	0.0	0.0
Live Load			20.0	20.0	20.0	20.0	0.0
Live Load - Reduced $R_2 = 1.00$			20.0	20.0	20.0	20.0	0.0
Total Load			46.8	49.0	54.5	54.5	34.5

2:12 ROOF @ SHOP BLDG

CBC Live Load Category: 26. Roof: of Slope: 2.00:12	Balconv2.	No		[Table 160	7.1]		
0.000. 2.00.12		Baloony	110				
Material	Thickness (in)	Sloped	Deck	Joists	Girders	Columns	Seismic
Roofing: Cap Sheet		Yes	3.0	3.0	3.0	3.0	3.0
Sheathing: 1/2 in. OSB		Yes	1.7	1.7	1.7	1.7	1.7
Decking:			0.0	0.0	0.0	0.0	0.0
Insulation: "Soft": Loose Fill, Blown-In, & Batt t =	2	Yes	0.4	0.4	0.4	0.4	0.4
Ceiling: Acoustical Fiber Tile		Yes		1.0	1.0	1.0	1.0
Framing: DF-L 2x6 @ 24"oc				1.1	1.1	1.1	1.1
Framing: GLB BEAMS					1.7	1.7	1.7
Framing: GLB GIRDER						1.0	1.0
MEP:			0.0	0.0	0.0	0.0	0.0
MEP: Typical			2.0	2.0	2.0	2.0	2.0
MEP: Solar			3.0	3.0	3.0	3.0	3.0
Miscellaneous			1.8	1.7	2.0	2.0	2.0
Dead Load			11.9	13.9	15.9	16.9	16.9
Dead Load - Horiz Projection			12.0	14.0	16.0	17.0	17.0
Partitions (Office Buildings)		No	0.0	0.0	0.0	0.0	0.0
Live Load			20.0	20.0	20.0	20.0	0.0
Live Load - Reduced $R_2 = 1.00$			20.0	20.0	20.0	20.0	0.0
Total Load			32.0	34.0	36.0	37.0	17.0

SHEAR WALL CAPACITY CHECK AT ANNEX

This calculation checks the reduced capacity of an (E) shear wall at the annex due to a widened louver opening.

Opening location:

Existing shear wall (length of wall is approximate):

Check shear wall:

Wall length = 24.0	ft	(conserv	ative)	
Existing: (E) OPNG (E) effective SW length	= =	24 22.0	in ft	
New: (N) OPNG (N) effective SW length	= =	<mark>26</mark> 21.8	in ft	
Conclude: Reduction in length % reduction of original	= =	0.2 0.69	ft % < 5% ?	(for CAC check)
PER CAC 4-309, DOES	NOT	EXCEED	5% RULE	

Davidson MS HVAC

ANCHORAGE

The following calculations check anchorage for a wall-mounted electrical panel and various pieces of mechanical equipment.

ZFA STRUCTURAL ENGINEERS Job #21650

Wall-Mounted Electrical Panel

Engineer: BVC; DM 1/3/2022

Davidson MS HVAC

Soil Site Class	D (by defaul) Table 20.3-1	
Response Spectral Acc. (0.2 sec) Ss =	1.500g	= 150.00%g	Figure 22-1, 22-3, 22-5, and 22-6
Response Spectral Acc. (1.0 sec) S1 =	0.600a	= 60.00%a	Figure 22-2, 22-4, 22-5, and 22-6
Site Coefficient Fa=	1.200		Table 11.4-1
Site Coefficient F _v =	1	7	Table 11.4-2
Max Considered Earthquake Acc. S _{MS} =	F _a .S _s	= 1.800	(11.4-1)
Max Considered Earthquake Acc. S _{M1} =	F _v .S ₁	= 1.020	(11.4-2)
@ 5% Damped Design S _{DS} = Soc =	2/3(S _{MS}) 2/3(S _{MS})	= 1.200	(11.4-3)
Building Risk Categories	2/3(0M1)	Public hazard	(11.4-4) Table 1.5-1
Design Category Consideration:	Flexible	Diaphragm wi	th dist. between seismic resisting system >40ft
Seismic Design Category for 0.1sec	D		
St < .75g	NA		
Comply with Seismic Design Cate	egory D		
12.2 Sojemic Domonde on Nonetructural	Componente	_	
Component Name:	Wall-Mounter	Electrical Panel "	LAA"
Component Description:	Motor control	centers, panel boa	ards, switch gear, instrumentation cabinets, and
	components	constructed of she	et metal framing
F. =	0.4a.S.	W. (1+27/h)	Sec = 1,200
• p -	(F	L ₀ /L ₀)	(13.3-1)
a _p =	2.5	R _p = 6.	0 T-13.5-1 or 13.6-1
$\Omega_{o} =$	2.0		T-13.5-1 or 13.6-1
I _p =	1.0		13.1.3
z (assumed) =	4 ft 1.6S1 W	h = 11	$F_p = 0.345 \text{ Wp}$ 920Wp (13.2.2)
Max Pp= Min F. =	0.3Snel.W.	= 1.	360Wp (13.3-3)
Fn=	0.360 Wp		. (
F _p Anchorage to Concrete IF using Ω _o =	0.720 Wp	(not reqd since	on wood SW)
		T-13.5-1 footno	ote b or 13.6-1 footnote c
NOTE:	W _{panel}	= 87 lb	s (DL)
	F _{p,LRFD}	= 31 lb = 22 lb	S
	• p,ASD	- 22 10	3
Incorporate Horizontal & Vertical Seismic Fo	rces (ASD):		
-			
E _h =	2	2 Ibs (E	CQ 12.4-3)
using ASD load combinations:	2	1 105 (1	- (12.4-4a)
Load ₈ =	11	7 lbs (2	2.4.5(8))
l oads =	10		
Ebddg -	10	9 lbs (2	2.4.5(9))
Loadig = Loadig = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{A34} =	39	9 lbs (2 3 lbs (2 7 lbs GOVERNS 5 lb (s 0 lb (s	(4.5(9)) (4.5(10)) ee SST screenshot below)
Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{A34} = Capacity _{#14 wood screw} =	39 11	9 lbs (2 3 lbs (2 7 lbs GOVERNS 5 lb (s 0 lb (s	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below)
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{#14 wood screw} = CONCLUDE:	39 16 capacity of a	9 lbs (2 3 lbs (2 7 lbs GOVERNS 5 lb (s 0 lb (s single #14 wood	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) (screw / single A34 > applied panel load Of
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{#14 wood screw} = CONCLUDE:	11 39 16 capacity of a	9 lbs (2 3 lbs (2 7 lbs GOVERNS 5 lb (s 0 lb (s single #14 wood	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) i screw / single A34 > applied panel load Of
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{A34} = Capacity _{814 wood screw = CONCLUDE:}	capacity of a	9 lbs (2 3 lbs (2 7 lbs GOVERNS 5 lb (s 0 lb (s single #14 wood	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) I screw / single A34 > applied panel load Of
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{A34} = Capacity _{A34} = CONCLUDE:	11 35 16 capacity of a Automs BOUNTS No	9 lbs (2 3 lbs (2 7 lbs GOVERNS (5 5 lb (s 0 lb (s single #14 wood (s	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) I screw / single A34 > applied panel load Ol
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity ₁₅₄ = Capacity ₁₅₄ wood screw = CONCLUDE:	11 35 11 35 16 capacity of a 8.001115 17 9.9 11 35 11 36 9.911500	9 bis (2) 3 bis (2) 7 bis GOVERNS (5) 5 bis (5) 0 bis (5) single #14 wood (5) 0 0 (5) 0 0 (5) 0 0 (5) 0 0 (5) 0 0 (5) 0 0 (5) 0 0 (5) 0 0 (5) 0 0 (5)	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) (screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{A34} = Capacity _{A34} = Capacity _{A34} = CONCLUDE:	Rotter Rotter Rotter Rotter Rotter Rotter Rotter Rotter Rotter Rotter	9 lbs (2 3 lbs (2 7 lbs GOVERNS 5 lb (5 0 lb (5 single #14 wood 10 lb (5 10 lb	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) screw / single A34 > applied panel load Of the state of the state
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{A34} = Capacity _{B14 wood screw = CONCLUDE:}	2000 100 100 100 100 100 100 100 100 100	99 lbs (2 3 lbs (2 3 lbs (2 7 lbs GOVERNS 5 lb (s 5 lb (s) (s) (s 5 lb (s)	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) iscrew / single A34 > applied panel load Of the state of the state
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity ₅₁₄ wood screw = CONCLUDE:	(10) (10)	9 lbs (2 3 lbs (2 3 lbs (2 7 lbs GOVERNS 5 lb (s 0 lb (s single #14 wood 0 lb (s <u>single #14 wood</u> 0 lb (s <u>single #14 wood</u> 0 lb (s) 0 lb	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) I screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / screw
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{A34} = Capacity _{A34} = ConCLUDE:	11 35 11 36 11 36 11 37 11 38 11 38 11 11 38 11 12 12 13 14 14 15 15 16 16 17 18 19 19 10 10 11 12 12 13 14 14 15 16 17 18 18 19 10 10 10 11 12 12 13 14 15	9 lbs (2 3 3 lbs (2 3 lbs (2 3 lbs (2 3 lbs (2 3 1 bs (2 5 1 bs (5 1 b	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) I screw / single A34 > applied panel load Of the the the the the the the the the the
Load ₁₀ total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{AS4} = Capacity _{AS4} = ConcLUDE:		9 lbs (2 3 3 lbs (2 3 3 lbs (2 2 7 lbs GOVERNS 5 lb (s 0 lb (s single #14 wood 0 lb (s 0 lb (s 0 lb (s) 0 lb (s	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) (screw / single A34 > applied panel load Of the first free free free free free free free fre
Load ₁₀ = Load ₁₀ = Check Hardware Capacity < TAPL: Capacity _{AA4} = Capacity _{A14} wood screw = CONCLUDE:	Capacity of a Capacity of a Restore Spectrum Design Method Connection Spec Lading Scenario	99 lbs (2 3 lbs (2 3 lbs (2 3 lbs (2 5 lb (5 6 lb (5 5 lb (5))) 5 lb (5 5 lb (5)) 5 lb	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / screw
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity ₅₁₄ = Capacity ₅₁₄ wood screw = CONCLUDE:	Constraint of the second	99 bis (2 3) 31 bis (2 3) 71 bis GOVERNS 51 bis (5 0) 00 bis (5 3) 51 bis (5 3)	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) I screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw /
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{A14} = Capacity _{A14} wood screw = CONCLUDE:	Constraints Constrain	99 lbs (2 3 37 lbs (2 3 7 lbs GOVERNS) 5 lb (5 0 0 lb (5 3 5 lb (5 1) 5 lb (5	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) t screw / single A34 > applied panel load Of transmission to the screen sc
Load ₁₀ total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{ASA} = Capacity _{ASA} = CONCLUDE:	constraints constrain	99 lbs (2 3 3 lbs (2 3 3 lbs (2 1 5 lb (5 0 0 lb (5 1 5 lb (5 1 0 lb (5 1 5 lb (5 1 5 lb (5 1 5 1 1 lb (5 1 lb (5 1 1 lb (5 1 lb (5	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) (screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / s
Load ₁₀ = Load ₁₀ = Check Hardware Capacity < TAPL: Capacity _{AA4} = Capacity _{AA4} = Capacity _{AA4} = ConcLUDE:	Image: Second	99 Ibs (2 3 Ibs (2 3 Ibs (2 5 Ib (5 6 Ib (5 7 Ibs GOVERNS 6 Ib (5 7 Ibs GOVERNS 7 Ibs GO	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / s
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity ₅₄₄ = Capacity ₅₁₄ wood screw = CONCLUDE:	Compactly of a Compactl	99 bis (2 3) 30 bis (2 3) 70 bis GOVERNS 50 bis (s 50 bis (s 51 bis (s 50 bis (s 51 bis (s)))))))))))))))))))))))))))))))))))	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) I screw / single A34 > applied panel load Ol The screw / single A34 > applied panel load Ol The screw / single A34 > applied panel load Ol The screw / single A34 > applied panel load Ol The screw / single A34 > applied panel load Ol The screw / single A34 > applied panel load Ol The screw / single A34 > applied panel load Ol The screw / single A34 > applied panel load Ol The screw / single A34 > applied panel load Ol The screw / single A34 > applied panel load Ol The screw / single A34 > applied panel load Ol The screw / single A34 > applied panel load Ol The screw / single A34 > applied panel load Ol The screw /
Load ₁₀ total applied panel load (TAPL) Check Hardware Capacity < TAPL: Capacity _{A34} = Capacity _{A14} wood screw = CONCLUDE:	Construction C	9 Bits (2 9 Bits (2 3 Bits (2 7 Jits GOVERNS 5 Bits (s 0 (d (s) = 0.242 is) (d (s) = 0.242 is)	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) t screw / single A34 > applied panel load Ol THE THE THE THE THE THE THE THE THE THE
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{ASA} = Capacity _{ASA} = CONCLUDE:	constraints of the second	9 Bits (2 3 Bits (2 3 Bits (2 3 Bits (2 5 Bits (2 6 Bits (5 0 Bits (6 0 Bits (7 0 Bits (7 0 (10<	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) (screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / s
Load ₁₀ = Load ₁₀ = total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{JAX} = Capacity _{JAX} = Capacity _{JAX} = CoNCLUDE:	Concerning and a second s	9 Ibs (2 3 Ibs (2 3 Ibs (2 3 Ibs (2 5 Ib (s 6 Ib (s single #14 wood Concellon Cat Monetonical Cat	<pre>(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) screw / single A34 > applied panel load Ol screw / single A34 > applied panel load Ol to the screen state and the</pre>
Load ₁₀ total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{JA3} = Capacity _{J14} wood screw = CONCLUDE:	Concerning and press	99 bis (2 3 bis (2 5 bis (5 0	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) Iscrew / single A34 > applied panel load Of The screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / scr
Load ₁₀ total applied panel load (TAPL) Check Hardware Capacity < TAPL: Capacity _{A34} = Capacity _{A14} wood screw = CONCLUDE:	Capacity of a Capacit	9 bis (2 9 bis (2 3 bis (2 7 Jiss GOVERNS (5 5 bis (5 0 bis (5 0 bis (5 single #14 wood (5 0 bis (5 0 bis (5 0 bis (7 0 bis (7 <td>(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) t screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / sc</td>	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) t screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / sc
Load ₁₀ Load ₁₀ Load ₁₀ Check Hardware Capacity < TAPL: Capacity _{ASA} = Capacity _{ASA} = Capacity _{ASA} = ConCLUDE:	capacity of a capacity cap	9 bis (2) 3 bis (2) 3 bis (2) 3 bis (2) 5 bis (s) 6 bis (s) 7 bis (s) 8 bis (s) 8 bis (s) 9 bis (s) 10 c) (s) 20 1.6 (c) 21 1.5 (c) 10 c) (c) 20 1.6 (c) 21 1.5 (c) 10 (c) (c) 21 1.5 (c) 11 (c) (c) 12 1.4 (c)	(4.5(9)) (4.5(10)) ee NSS screenshot below) ee NDS calc screenshot below) (screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / scr
Load ₁₀ Load ₁₀ Load ₁₀ Check Hardware Capacity < TAPL: Capacity _{JAX} Capacity _{IAI} CONCLUDE:	Concerning C	9 Ibs (2 3 Ibs (2 3 Ibs (2 3 Ibs (2 5 Ib (s 6 Ib (s single #14 wood (s 10 Ibs GOVERNS (s 10 Ibs (s 11 Ibs (s 12 Ibs (s 14 Ibs (s 14 Ibs (s 15 Ibs (s 16 Ibs (s 17 Ibs (s	(4.5(10)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) screw / single A34 > applied panel load Of the formation of the formation of
Load ₁₀ Load ₁₀ Load ₁₀ Check Hardware Capacity < TAPL: Capacity _{JA3} = Capacity _{J14} woodscree CONCLUDE:	Conception of the second	9 Ibs (2 99 Ibs (2 30 Ibs (2 7 Ibs GOVERNS (5 5 Ib (5 0 Ib (5 10 Ib (7	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) Iscrew / single A34 > applied panel load Of The screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of the screw / screw / screw / scre
Load ₁₀ Load ₁₀ Load ₁₀ Check Hardware Capacity < TAPL: Capacity _{ASA} = Capacity _{ASA} = Capacity _{ASA} = CONCLUDE:	Connection Server Xuel Server Xue	99 lbs (2 3) 30 lbs (2 7) 10 lbs GOVERNS 5 lb (s 0) 5 lb (s 0) 10 lb	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) I screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of The screw / sc
Load ₁₀ Load ₁₀ Load ₁₀ Check Hardware Capacity < TAPL: Capacity _{ASA} = Capacity _{ASA} = Capacity _{ASA} = ConCLUDE:	Connection C	99 Bis (2) 30 Bis (2) 30 Bis (2) 30 Bis (2) 50 Bis (s) 50 Bis (s) 50 Bis (s) single #14 wood Image: Single #14 wood 100 Bis Image: Single #14 wood 101 Bis Image: Si	(4.5(9)) (4.5(10)) ee NSS screenshot below) ee NDS calc screenshot below) (screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / screw
Load ₁₀ Load ₁₀ Load ₁₀ Check Hardware Capacity < TAPL: Capacity _{JAS} = Capacity _{I41 wood server} CONCLUDE:	Algorial ASD College Algorial ASD Col	9 Ibs (2 3 Ibs (2 3 Ibs (2 3 Ibs (2 5 Ib (s 6 Ib (s single #14 wood (s 10 Ibs GOVERNS (s 10 Ibs GOVERNS (s 10 Ibs (s <tr tr=""></tr>	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) I screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / single A34 > applied panel load Of the screw / scr
Load ₁₀ Load ₁₀ Load ₁₀ Check Hardware Capacity < TAPL: Capacity _{JA4} = Capacity _{J14} woodscree CONCLUDE:	Connection Type Connection Type Connection Type Connection Type Connection Type Connection Connection Type Connection Connection Type Connection Type Connection Connection Type Connection Connection Type Type Connection Type Type Connection Type Connection Type T	9 bis (2 9 bis (2 3 bis (2 7 bis GOVERNS (5 7 bis GOVERNS (5 6 bis (5 9 bis	(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) Iscrew / single A34 > applied panel load Of The screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of The screw / single A34 > applied panel load Of the screw / sc
Load ₁₀ total applied panel load (TAPL) Check Hardware Capacity < TAPL: Capacity _{ASA} = Capacity _{ASA} = Capacity _{ASA} = CONCLUDE:	Connection Type Connection Connection	99 lbs (2 3) 31 bs (2 7) 31 bs (2 7) 51 bs (5 0) 51 bs (5 0) 52	<pre>(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) (screw / single A34 > applied panel load Of minimum minimum</pre>
Load ₁₀ Load ₁₀ Load ₁₀ Check Hardware Capacity < TAPL: Capacity _{JAX} Capacity _{IAX} ConcLUDE:	Concerning and a second s	9 bs (2 3 bs (2 3 bs (2 3 bs (2 3 bs (S 5 b (s 0 b (s) single #14 wood (s) single #14 wood (s) single #14 wood (s) word	<pre>(4.5(9)) (4.5(10)) ee NDS calc screenshot below) ee NDS calc screenshot below) (screw / single A34 > applied panel load Of</pre>
Load ₁₀ total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{JAS} = Capacity _{I14 wood server = CONCLUDE: }	All and a second s	9 90 bits (2 3 bits (2 7 Jibs GOVERNS 7 Jibs GOVERNS 5 Jib (S 0	<pre>(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below) Iscrew / single A34 > applied panel load OI The screw / single A34 > applied panel load OI The screw / single A34 > applied panel load OI The screw / single A34 > applied panel load OI The screw / screw</pre>
Load ₁₀ total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{JAL} = Capacity _{J14} wood server = CONCLUDE:	Control of the second of	9 Boks (2) 99 Boks (2) 91 Boks (2) 91 Boks (2) 97 Ibbs GOVERNS (5) 90 Ibb (5) 90 Ibb (5) 91 Ibbs GOVERNS (5) 91 Ibbs GOVERNS (5) 91 Ibbs GOVERNS (5) 91 Ibbs Governo <	(4.5(10)) (4.5(10)) (4.5(10)) (4.5(10)) (4.5(10)) (4.5(10)) (4.5(10)) (4.5(10)) (4.5(10)) (4.5(10)) (4.5(10)) (4.5(10)) (5.5(10)) (5.5(10)) (5.5(10)) (5.5(10)) (7.5(10))
Load ₁₀ total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{JAS} = Capacity _{JAS} = Capacity _{JAS} = CONCLUDE:	Constant of the second se	99 lbs (2 3) 30 lbs (2 3) 30 lbs (2 3) 71 lbs GOVERNS 51 lb (5 0) 51 lb (5 0) 52 lb (5 0)	(4.5(9)) (4.5(10)) ee NDS calc screenshot below) ee NDS calc screenshot below) (1) <
Load ₁₀ total applied panel load (TAPL) = Check Hardware Capacity < TAPL: Capacity _{JAX} = Capacity _{JIA} = CONCLUDE:	A second se	99 lbs (2 3) 39 lbs (2 3) 3	<pre>(4.5(9)) (4.5(10)) ee NSS screenshot below) ee NDS calc screenshot below) Iscrew / single A34 > applied panel load OI Term maturation Term Term</pre>
Load ₁₀ total applied panel load (TAPL) = Check Hardware Capacity < TAPL) Capacity _{JAS} = Capacity _{JIA} = ConcLUDE:	A second se	9 bis (2) 9 bis (2) 3 bis (2) 7 bis GOVERNS (5) 8 bis (5) 9 bis (7) 10 bis (7)	<pre>(4.5(9)) (4.5(10)) ee SST screenshot below) ee NDS calc screenshot below] screw / single A34 > applied panel load OI Transmit Tra</pre>

Davidson MS HVAC

Vert Fan Coil

Calculation checks worst loading case for vertical fan coils, using information from A/M-4.1

ZFA STRUCTURAL ENGINEERS Job #21650 Vert FC - Fp

Engineer: BVC; DM 1/3/2022

VERTICAL FAN COIL (167 lb)

CBC2019, ASCE 7-16 CHAPTER 11, 12, 13 SEISMIC DESIGN CRITERIA

Soil Site Class	D (by defa	ult) Table 20.3-1	
Response Spectral Acc. (0.2 sec) Ss =	1.500g	= 150.00%g	Figure 22-1, 22-3, 22-5, and 22-6
Response Spectral Acc.(1.0 sec) S1 =	0.600g	= 60.00%g	Figure 22-2, 22-4, 22-5, and 22-6
Site Coefficient $F_a =$	1.200		Table 11.4-1
Site Coefficient $F_v =$		1.7	Table 11.4-2
Max Considered Earthquake Acc. S_{MS} =	$F_a.S_s$	= 1.800	(11.4-1)
Max Considered Earthquake Acc. $S_{M1} =$	$F_v.S_1$	= 1.020	(11.4-2)
@ 5% Damped Design S_{DS} =	2/3(S _{MS})	= 1.200	(11.4-3)
S _{D1} =	2/3(S _{M1})	= 0.680	(11.4-4)
Building Risk Categories	III	Public hazard	Table 1.5-1
Design Category Consideration:	Flexibl	e Diaphragm	with dist. between seismic resisting system >40ft
Seismic Design Category for 0.1sec	D		
Seismic Design Category for 1.0sec	D		
S1 < .75g	NA		
Comply with Seismic Design Cate	gory D		

13.3 Seismic Demands on Nonstructural Components

Component Name: Vo Component Description: Ai ra m	ertical Fan C r coolers (fir diators and e etal supports	oil FC 2 i fans), a other me	7-1 air-cooled heat exchan echanical components	gers, condensing units, dry coolers, remote elevated on integral structural steel or sheet
F _p =	0.4a _p S _{DS} \	N _p (1+2z	/h)	$S_{DS} = 1.200$
· · · · ·	(R	p/Ip)		(13.3-1)
$a_p = 2.$	5		R _p = 3.0	T-13.5-1 or 13.6-1
$\Omega_{o} = 1.$	5			T-13.5-1 or 13.6-1
I _p = 1.	0			13.1.3
z = 4	ft		h = 11 ft	F _p = 0.691 Wp
Max F _p =	$1.6S_{DS}I_{p}W_{p}$		= 1.920Wp	(13.3-2)
Min F _p =	$0.3S_{DS}I_{p}W_{p}$		= 0.360Wp	(13.3-3)
$F_p = 0.$	691 Wp			
$F_{p \text{ Anchorage to Concrete IF using }} \Omega_{o} = 1.$	036 Wp			T-13.5-1 footnote b or 13.6-1 footnote c
$W_p =$	167.0	lb		
F _p =	115.4	lb	(LRFD)	
F_p Anchorage to Concrete IF using Ω_o =	173.1	lb		

VERTICAL FAN COIL ANCHORAGE

Calculations for detail A/M-4.1... use identical anchorage for C/M-4.1 and D/M-4.1 since A/M-4.1 has the heaviest unit. See also "Vert Fan Coil Fp" calc.

lb (FC 27-1 from MECH drawings) Fan coil weight = 167

From "Vert Fan Coil Fp" sheet:

F _{p, LRFD}	=	115	lb
$F_{p,ASD}$	=	80.8	lb

Incorporate Horizontal & Vertical Seismic Forces (ASD):

total load (252	lbs G	OVERNS		
Load ₁₀	=	129	lbs	(2.4.5(10))	
Load ₉	=	230	lbs	(2.4.5(9))	
Load ₈	=	252	lbs	(2.4.5(8))	
using ASD load combinations:					
Ev	=	40	lbs	(EQ 12.4-4a)	
Eh	=	81	lbs	(EQ 12.4-3)	

Seismic strap fasteners:

Lag screws:	quantity	=	4		
	load/fastener	=	62.9	lb	(ASD) use for tension and shear load
	dia	=	0.38	in	(from mech detail)
	embed	=	2.5	in	(from mech detail)
	dia embed	- = =	0.38 2.5	in in	(from mech detail) (from mech detail)

check shear...

Fastener Type Lag Scr Loading Scenario Single S check using AWC connection calculator: Main Member Type Douglas Fir Main Member Thickness 3.5 in fastener capacity (ASD) = 327 lb Main Member: Angle of Load to Grain Side Member Type Stee Side Member Thickness CONCLUDE: Side Member: Angle of Load to Grain 0 DCR 0.19 = Washer Thickness Nominal Diameter shear **OK** Length Load Duration Factor Wet Service Factor End Grain Factor C_eg = 1.

Design Method Allowable Stress Design (AS Connection Type Lateral loading Temperature Factor C_t = 1.0 **Connection Yield Modes**

Im	1292 lbs.	
Is	688 lbs.	
п	580 lbs.	
IIIm	695 lbs.	
IIIs	327 lbs.	
IV	436 lbs.	

Adjusted ASD Capacity 327 lbs.

Davidson MS HVAC

NOTE: conservatively apply "load/fastener" as shear & tension to MB for combined check

shear & tension checks on "Vert FC - MB Check" sheet

Davidson MS HVAC

VERTICAL FAN COIL BOLT CAPACITY

Loading: MACHIN	IE BOLT - VE	RT FAN COIL ANCHORAGE			
Se	ee also: " <mark>Vert</mark>	Fan Coil Anchorage" sheet			
Design Methodology				ASD	
Shear Demand			V =	0.1	k
Tension Demand			T =	0.1	k
Design Strength (§J3.6 &	<u>§J3.7):</u>		Ω =	2.00	
Bolt Description				A	307
Nominal Tensile Stress			F _{nt} =	45	ksi
Nominal Shear Stress			$F_{nv} =$	27	ksi
Bolt Diameter			d =	0.38	in
Bolt Area			$A_{b} =$	0.11	in ²
Allowable Shear Strengt	th	Fny	v Ab / Ω =	1.5	k
Shear Utilization Ratio			DCR =	0.04	
Required Shear Stress Modified Tensile Stress		Fnt' = min[Fnt, 1.3 Fnt - (Ω Fnt / F	frv = ⁻ nv) frv] =	0.6 45.0	ksi ksi
Available Tensile Strength	h	Fn	t' Ab / Ω =	2.5	k
Tension Utilization Ration	0		DCR =	0.03	
Design Bearing Strength	<u>(§J3.10):</u>		Ω =	2.00	
Minimum Tensile Strength	h of Connecte	d Material	Fu =	50	ksi
Clear Distance from Hole	to Hole or Ed	ge	lc =	0.81	in
Thickness of Connected	Material		t =	0.06	in
Bearing Condition Nominal Bearing Strength	ı	Deformation at bolt hole at servic Rn = min[1.2 lc t Fu, 2.4	: <mark>e load is co</mark> ł d t Fu] =	nsider 2.8	ed k
Available Bearing Stren	ath		Rn/O =	14	k
Bearing Utilization Ratio	901 D		DCR =	0.04	ĸ
	-			0.01	

ZFA STRUCTURAL ENGINEERS

Job #21650 Vert FC - Screw Check

Engineer: BVC; DM 1/3/2022

Davidson MS HVAC

VERTICAL FAN COIL SCREW CAPACITY

Reference: AISI S100-16 Section J4

Applies to $0.08 \le d \le 0.25$

See Section I2 for diaphragms Minimum spacing between fastener centers = 3d

Minimum edge distance to fastener center = 1.5d

SMS #10

d 0.19 in

Nominal screw diameter

Member in contact with screw head

Mils	118	
Grade	50	Conforming to A3.1.1
t ₁ =	0.124	in
F _{y1} =	50	ksi
F _{u1} =	65	ksi

Demands to Screw

 $V_{max} = 0.063$ kips ASD Load Input $T_{max} = 0.126$ kips

Shear Strength of Screw Connection (per Section J4.3)

 $t_2/t_1 = 1.00$

$P_{nv1} = 4.2 (t_2^{-3}d)^{1/2} F_{u2} =$	5.209 kips	(Eq J4.3.1-1)
P _{nv2} = 2.7 t ₁ d F _{u1} =	4.141 kips	(Eq J4.3.1-2), (Eq J4.3.1-4)
P_{nv3} = 2.7 t ₂ d F_{u2} =	4.141 kips	(Eq J4.3.1-3), (Eq J4.3.1-5)

$P_{nv,min,1} = min(P_{nv1}, P_{nv2}, P_{nv3}) =$	4.141 kips	for $t_2/t_1 \le 1.0$
$P_{nv,min,2} = min(P_{nv2},P_{nv3}) =$	4.141 kips	for $t_2/t_1 \ge 2.5$

 P_{nv} = 4.141 kips Shear resistance of sheet

 P_{nvs} = 1.644 kips Shear resistance of screw

Tension Strength of Screw Connection (per Section J4.4)

d _h =	0.340	in	Screw head diameter
d _w =	0.000	in	Steel washer diameter (5/16" min)
t _w =	0.000	in	Steel washer thickness
d' _w =	0.340	in	(J4.4.2-2), J4.4.2 (a), (b), (c)
t _c =	0.124	in	assume full penetration of t ₂
P _{not} =	0.85 t _c	$d F_{12} =$	1.304 kips (J4.4.1-1)

$r_{not} = 0.00 r_c u r_{u2} =$	1.504 Kips	(04.4.1-1)
P_{nov} = 1.5 $t_1 d'_w F_{u1}$ =	4.117 kips	(J4.4.2-1)
P _{nts} = 1.158 kips	Tension resistance o	f screw

Mils	Gauge	Thickness
18	25	0.0188
27	22	0.0283
30	20	0.0312
33	20	0.0346
43	18	0.0451
54	16	0.0566
68	14	0.0713
97	12	0.1017
118	10	0.1242

Member not in contact with screw head

Mils	118	
Grade	50	Conforming to A3.1.1
t ₂ =	0.124	in
$F_{y2}=$	50	ksi
$F_{u2}=$	65	ksi

Ω	3.00	J4.3.2	ASD
Pnv/Ω=	0.548	kips	
DCR =	0.11		

Ω	3.00	J4.4.3	ASD
Pnts/Ω=	0.386	kips	
DCR =	0.33		

ZFA STRUCTURAL ENGINEERS Job #21650 Vert FC - Screw Check

Engineer: BVC; DM 1/3/2022

Davidson MS HVAC

J4.5.2 ASD

Combined Shear and Pull-Over Screw Connection (per Section J4.5.1)

$\frac{\overline{V}}{P_{nv}} + 0.71 \frac{\overline{T}}{P_{nov}} \le \frac{1.10}{\Omega}$	(ASD)	(<i>Eq.</i> J4.5.1-1a)
$\frac{\overline{V}}{P_{nv}} + 0.71 \frac{\overline{T}}{P_{nov}} \le 1.10\phi$	(LRFD, LSD)	(<i>Eq.</i> J4.5.1-1b)
$P_{nv} = 4.14 \text{ kips}$ $P_{nov} = 4.12 \text{ kips}$ $V/P_{nv} = 0.02$ $T/P_{nov} = 0.03$		

Ω	2.35	J4.5.1	ASD
1.10/Ω=	0.468		
Stress Ratio =	0.037		
DCR =	0.08		

Ω 2.55

 $1.15/\Omega = 0.451$ Stress Ratio = 0.112 DCR = 0.25

Combined Shear and Pull-Out Screw Connection (per Section J4.5.2)

$\frac{\overline{V}}{P_{nv}} + \frac{\overline{T}}{P_{not}} \le \frac{1.15}{\Omega}$	(ASD)	(Eq. J4.5.2-1a)
$\frac{\overline{V}}{P_{nv}} + \frac{\overline{T}}{P_{not}} \le 1.15\phi$	(LRFD, LSD)	(Eq. J4.5.2-1b)
$P_{nv} = 4.14$ kips		
$P_{not} = 1.30$ kips		
$V/P_{nv} = 0.02$		
$T/P_{not} = 0.10$		

Combined Shear and Tension in Screw (per Section J4.5.3)

$\frac{\overline{V}}{P_{nvs}} + \frac{\overline{T}}{P_{nts}} \le \frac{1.3}{\Omega}$	(ASD)	(Eq. J4.5.3-1a)
$\frac{\overline{V}}{P_{nvs}} + \frac{\overline{T}}{P_{nts}} \le 1.3\phi$	(LRFD, LSD)	(Eq. J4.5.3-1b)
$P_{\text{nvs}} = 1.64$ kips		

Ω	3.00	J4.5.3	ASD
1.3/Ω=	0.433		
Stress Ratio =	0.147		
DCR =	0.34		

 $\begin{array}{rrrr} \mathsf{P}_{\mathsf{nvs}} = & 1.64 & \mathsf{kips} \\ \mathsf{P}_{\mathsf{nts}} = & 1.16 & \mathsf{kips} \\ \mathsf{V/P}_{\mathsf{nvs}} = & 0.04 \\ \mathsf{T/P}_{\mathsf{nts}} = & 0.11 \end{array}$

Engineer: BVC; DM 1/3/2022 Davidson MS HVAC

Horiz Fan Coil

Calculation checks worst loading case for horizontal fan coils, using information from B/M-4.1 and the associated detail D/M-4.3

ZFA STRUCTURAL ENGINEERS Job #21650 Horiz FC - Fp

Engineer: BVC; DM 1/3/2022

HORIZONTAL FAN COIL (167 lb)

CBC2019, ASCE 7-16 CHAPTER 11, 12, 13 SEISMIC DESIGN CRITERIA

Soil Site Class	D (by default)	Table 20.3-1	
Response Spectral Acc. (0.2 sec) Ss =	1.500g	= 150.00%g	Figure 22-1, 22-3, 22-5, and 22-6
Response Spectral Acc.(1.0 sec) S1 =	0.600g	= 60.00%g	Figure 22-2, 22-4, 22-5, and 22-6
Site Coefficient $F_a =$	1.200		Table 11.4-1
Site Coefficient $F_v =$	1.7	7	Table 11.4-2
Max Considered Earthquake Acc. S _{MS} =	F _a .S _s	= 1.800	(11.4-1)
Max Considered Earthquake Acc. $S_{M1} =$	F _v .S₁	= 1.020	(11.4-2)
@ 5% Damped Design S_{DS} =	2/3(S _{MS})	= 1.200	(11.4-3)
S _{D1} =	2/3(S _{M1})	= 0.680	(11.4-4)
Building Risk Categories		Public hazard	Table 1.5-1
Design Category Consideration:	Flexible D	iaphragm	with dist. between seismic resisting system >40ft
Seismic Design Category for 0.1sec	D		
Seismic Design Category for 1.0sec	D		
S1 < .75g	NA		
Comply with Seismic Design Cate	gory D	1	

13.3 Seismic Demands on Nonstructural Components

Component Name: Horizontal Fan Coil FC 37-1

Component Description: Air-side HVAC, fans, air handlers, air conditioning units, cabinet heaters, air distribution boxes, and other mechanical components constructed of sheet metal framing

$F_p =$	0.4a _p S _{DS} V	N _p (1+2z/h)		$S_{DS} = 1.200$
	(R	_p /I _p)	-	(13.3-1)
$a_p = 2.$	5	R _p =	6.0	T-13.5-1 or 13.6-1
$\Omega_{\rm o} = 2.$	0			T-13.5-1 or 13.6-1
I _p = 1.	0			13.1.3
z = 1 1	l ft	h =	11 ft	$F_{p} = 0.600 Wp$
Max F _p =	$1.6S_{DS}I_{p}W_{p}$	=	1.920Wp	(13.3-2)
Min F _p =	$0.3S_{DS}I_{p}W_{p}$	=	0.360Wp	(13.3-3)
$F_p = 0.$	600 Wp			
$F_{p \text{ Anchorage to Concrete IF using }} \Omega_{o} = 1.$	200 Wp			T-13.5-1 footnote b or 13.6-1 footnote c
$W_p =$	167.0	lb		
F _p =	100.2	lb	(LRFD)	
$F_{p \ Anchorage to \ Concrete \ IF \ using \ \Omega_{o} =$	200.4	lb		

VERTICAL FAN COIL ANCHORAGE

Calculations for detail B/M-4.1. See also "Horiz Fan Coil Fp" calc.

Fan coil weight = 167 lb (FC 27-1 from MECH drawings)

From "Horiz Fan Coil Fp" sheet:

F _{p, LRFD}	=	100	lb
$F_{p,ASD}$	=	70.1	lb

Incorporate Horizontal & Vertical Seismic Forces (ASD):

Eh	=	70	lbs	(EQ 12.4-3)		
Ev	=	40	lbs	(EQ 12.4-4a)		
using ASD load combinations:						
Load ₈	=	244	lbs	(2.4.5(8))		
Load ₉	=	225	lbs	(2.4.5(9))		
Load ₁₀	=	121	lbs	(2.4.5(10))		
total load (244	lbs G	OVERNS			

Loading:

ZFA STRUCTURAL ENGINEERS Job #21650 Horiz FC - Anchorage

Engineer: BVC; DM 1/3/2022

Davidson MS HVAC

Check cable:

Fy	=	33	ksi	(assumed)
dia	=	0.09	in	(from mech detail)
As	=	0.01	in	(from mech detail)
Ω_t	=	2	(ruptu	ıre)
$A_s F_y / \Omega_t$	=	114	lb	

CONCLUDE:	1			
USE	0.09	dia	DCR	0.76

Check vertical rod:

Fy	=	36	ksi	(assumed)
dia	=	0.38	in	(from mech detail)
A _s	=	0.11	in	(from mech detail)
Ω_t	=	2	(ruptu	ıre)
$A_s F_y / \Omega_t$	=	1988	lb	

CONCLUDE:						
USE	0.38	dia	DCR	0.03		

Check bolt connecting rod brace to blocking:

	S	shear	ΟΚ					
	DCR	=	0.07					
	CONCLUDE:			[
faste	ener capacity	=	821	lb	(ASD)			
check	eck using AWC connection calculator:							

	Design Method	Allowable Stress Design (ASD)	~
	Connection Type	Lateral loading	~
	Fastener Type	Bolt	~
Ì	Loading Scenario	Single Shear - Wood Main Member	~
-			
Γ	Main Member Type	Douglas Fir-Larch	`
Γ	Main Member Thickness	3.5 in.	`
Γ	Main Member: Angle of Load to Grain	90	
Ē	Side Member Type	Steel	
	Side Member Thickness	1/4 in.	
s	ide Member: Angle of Load to Grain	0	
Ē	Fastener Diameter	1/2 in.	`
Ē	Load Duration Factor	C_D = 1.6	`
Γ	Wet Service Factor	C_M = 1.0	
F	Temperature Factor	C t = 1.0	,

Connection Yield Modes

Im	1764 lbs.	
Is	3480 lbs.	
П	861 lbs.	
IIIm	1049 lbs.	
IIIs	821 lbs.	
IV	955 lbs.	

Adjusted ASD Capacity 821 lbs.

Check angle for bending:

	L_{angle}	=	2.1	f	t	(approx)
	force	=	122	2	b	(1/2 of tot since 2 angles)
	load	=	58.1	1 p	olf	
CODE REFERENCES						
Calculations per AISC 360-16, IBC 201 Load Combination Set : ASCE 7-16	18, CBC 2019, .	ASCE 7-1	16			
Material Properties						
Analysis Method :Allowable Strength De Beam Bracing : Completely Unbrace Bending Axis : Major Axis Bending	esign ed					Fy : Steel Yield : 36.0 ksi E: Modulus : 29,000.0 ksi
Vertical Leg Up			E(0.058	10)		
		s	L3x3x1 Span = 2.	/4 .10 ft		
Applied Loads				Servi	ice loa	ads entered. Load Factors will be applied for calculations.
Beam self weight NOT internally ca Uniform Load : E = 0.05810 k/l	Iculated and ad t, Tributary Wi	dded dth = 1.0	ft, (horiz	FC)		Design OK
Maximum Bending Stress Ratio =	(0.018 : 1	Max	kimum S	Shear	r Stress Ratio = 0.004 : 1
Section used for this span	L3x3	3x1/4		Sect	tion u	used for this span L3x3x1/4
Ma : Applied Ma / Omega : Allowable		0.022 k-ft	t +		Va:	: Applied 0.04270 k
Load Combination Location of maximum on span Span # where maximum occurs	E Only Sp	* 0.70 1.050 ft an # 1	L	Load Loca Spar	I Com ation o n # wh	hbination E Only * 0.70 f maximum on span 0.000 ft here maximum occurs Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.000 in 0.000 in 0.001 in 0.000 in	Ratio = Ratio = Ratio = Ratio =	0 0 50279 0	<360 <360 >=180 <180	Spa Spa	ban: 1 : E Only ban: 1 : E Only * 0.70

Check machine bolt connecting seismic brace to blocking:

(bolts under worst loading when FC moves horizontally in either direction)

quantity	=	1	(per o	cable/seismic brace)
load/fastener	=	61	lb	(ASD) use for shear
dia	=	0.38	in	(from mech detail)
embed	=	3.5	in	(from mech detail)

Davidson MS HVAC

check shear								
oneon oneon.	••					Design Method	Allowable Stress Design (ASD)	
						Connection Type	Lateral loading	~
						Fastener Type	Bolt	~
спеск	using AVVC c	onnec	tion cal	culato	or:	Loading Scenario	Single Shear - Wood Main Member	~
						Main Member Type	Douglas First arch	
facto		_	620	lh	(190)	Main Member Thickness	3.5 in.	
Tasle	capacity	=	029	IJ	(ASD)	Main Member: Angle of Load to Grain	0	
-						Side Member Type	Steel	~
	CONCLUDE.					Side Member Thickness	12 gage	~
	DCR	_	0 1			Side Member: Angle of Load to Grain	0	
	DON	_	0.1			Fastener Diameter	3/8 in.	~
		shear	OK			Load Duration Factor	C_D = 1.6	~
						Wet Service Factor	C_M = 1.0	~
						Temperature Factor	C_t = 1.0	~
						Conne	ction Yield Modes	
						Im	2940 lbs.	
						Is	974 lbs.	
						II	1319 lbs.	-
						IIII	629 lbs	-
						IV	873 lbs.	-
						L.	JC	_

Check seismic brace connector:

(load applied to brace connector is equivalent to cable force)

from mech dwgs:	BRACE ANGLE RANGE q	MAX AL FOR SEISMI ASSEI	LOWAB CE PER IC BRAC MBLY, F	LE E p
	30° - 45°	270	LBS	
	46° - 60°	190	LBS	
F _{pmax}	=	190	lb	(ASD)

CONCLUDE:	
by observation, seismic braces OKAY	

Engineer: BVC; DM 1/3/2022 Davidson MS HVAC

Refrig Pipe

Calculation checks anchorage for refrigeration pipe from A/M-4.3

ZFA STRUCTURAL ENGINEERS Job #21650 Refrig Pipe - Fp

Engineer: BVC; DM 1/3/2022

REFRIGERATION PIPE SUPPORT

CBC2019, ASCE 7-16 CHAPTER 11, 12, 13 SEISMIC DESIGN CRITERIA

Soil Site Class	D (by default)	Table 20.3-1	
Response Spectral Acc. (0.2 sec) Ss =	1.500g	= 150.00%g	Figure 22-1, 22-3, 22-5, and 22-6
Response Spectral Acc.(1.0 sec) S1 =	0.600g	= 60.00%g	Figure 22-2, 22-4, 22-5, and 22-6
Site Coefficient $F_a =$	1.200		Table 11.4-1
Site Coefficient $F_v =$	1.7		Table 11.4-2
Max Considered Earthquake Acc. S_{MS} =	$F_a.S_s$	= 1.800	(11.4-1)
Max Considered Earthquake Acc. $S_{M1} =$	$F_v.S_1$	= 1.020	(11.4-2)
@ 5% Damped Design S_{DS} =	2/3(S _{MS})	= 1.200	(11.4-3)
S _{D1} =	2/3(S _{M1})	= 0.680	(11.4-4)
Building Risk Categories	III	Public hazard	Table 1.5-1
Design Category Consideration:	Flexible Dia	aphragm	with dist. between seismic resisting system >40ft
Seismic Design Category for 0.1sec	D		
Seismic Design Category for 1.0sec	D		
S1 < .75g	NA	_	
Comply with Seismic Design Cate	gory D		
		1	

13.3 Seismic Demands on Nonstructural Components

Component Name:Refrigeration pipe along wall (CONSIDERED PER 8' SUPPORT SPCG)Component Description:Piping and tubing not in accordance with ASME B31, including in-line components,
constructed of high- or limited-deformability materials, with joints made by threading, bonding,
compression couplings, or grooved couplings $F_p = 0.4a_rS_{ps}W_p(1+2z/h)$ $S_{ps} = 1.200$

F _p =	$0.4a_{p}S_{DS}$	_s vv _p (1+2z/	/n)	$S_{DS} = 1.200$
—	(F	R _p /I _p)		(13.3-1)
$a_p = 2$	5		$R_p = 4.5$	T-13.5-1 or 13.6-1
$\Omega_{\rm o} = 2.$	0			T-13.5-1 or 13.6-1
I _p = 1.	0			13.1.3
z = 4	ft		h = 11 ft	$F_{p} = 0.461 Wp$
Max F _p =	$1.6S_{DS}I_{p}W_{p}$)	= 1.920Wp	(13.3-2)
Min F _p =	$0.3S_{DS}I_{p}W_{p}$)	= 0.360Wp	(13.3-3)
$F_p = 0.$	461 Wp			
$F_{p \text{ Anchorage to Concrete IF using }} \Omega_{o} = 0.$	921 Wp			T-13.5-1 footnote b or 13.6-1 footnote c
$W_p =$	160.0	lb	(assumed ~20 p	sf)
F _p =	73.7	lb	(LRFD)	
$F_{p \text{ Anchorage to Concrete IF using }}\Omega_{o}=$	147.4	lb		

REFRIGERATION PIPE ALONG WALL

Calculations for detail A/M-4.3. See also "Refrig Pipe - Fp" calc.

pipe = 160 lb

From "Refrig Pipe Fp" sheet:

F _{p, LRFD}	=	73.7	lb
$F_{p, ASD}$	=	51.6	lb

Incorporate Horizontal & Vertical Seismic Forces (ASD):

Load ₁₀	=	105	lbs	(2.4.5(10))				
Load	=	207	lbs	(2.4.5(9))				
Load ₈	=	223	lbs	(2.4.5(8))				
using ASD load combinations:								
Ev	=	38	lbs	(EQ 12.4-4a)				
E _h	=	52	lbs	(EQ 12.4-3)				

Seismic strap fasteners:

quantity	=	2		
load/fastener	=	111	lb	(ASD) use for tension and shear load
dia	=	0.38	in	(from mech detail)
embed	=	2.5	in	(from mech detail)
	quantity load/fastener dia embed	quantity = load/fastener = dia = embed =	$\begin{array}{rcl} \text{quantity} &=& 2\\ \text{load/fastener} &=& 111\\ \text{dia} &=& 0.38\\ \text{embed} &=& 2.5 \end{array}$	$\begin{array}{rcl} \text{quantity} &=& 2\\ \text{load/fastener} &=& 111 & \text{lb}\\ \text{dia} &=& 0.38 & \text{in}\\ \text{embed} &=& 2.5 & \text{in} \end{array}$

check shear...

check using AWC connection calculator:

fastener capacity	/ =	327	lb	(ASD)
CONCLUDE DCR	= shear	0.34 OK		

Design Method	Allowable Etrace Decise (AED)	
Design Method	Allowable Stress Design (ASD)	
Connection Type	Lateral loading	
Fastener Type	Lag Screw	
Loading Scenario	Single Shear	
Main Member Type	Douglas Fir-Larch	
Main Member Thickness	3.5 in.	
Main Member: Angle of Load to Grain	0	
Side Member Type	Steel	
Side Member Thickness	12 gage	
Side Member: Angle of Load to Grain	0	
Washer Thickness	0 in.	
Nominal Diameter	3/8 in.	
Length	2 in.	
Load Duration Factor	C_D = 1.6	
Wet Service Factor	C_M = 1.0	
End Grain Factor	C_eg = 1.0	
Temperature Factor	C_t = 1.0	

Connection Yield Modes

Im	995 lbs.	
Is	688 lbs.	
п	449 lbs.	
IIIm	558 lbs.	
IIIs	327 lbs.	
IV	436 lbs.	

Adjusted ASD Capacity 327 lbs.

Davidson MS HVAC

check tension... Design Method Allowable Stress Design (ASD
 Connection Type
 Withdrawal loading

 Fastener Type
 Lag Screw

 Loading Scenario
 N/A
 check using AWC connection calculator: Main Member Type Douglas Fir-Larch fastener capacity lb (ASD) = 625 Main Member Thickness Side Member Type Side Member Thickness CONCLUDE: Washer Thickness Nominal Diameter 3/8 in DCR = 0.18 Length 2 in. Load Duration Factor tension **OK** Wet Service Factor
 End Grain Factor
 C_eg = 1.0

 Temperature Factor
 C_t = 1.0
 Adjusted ASD Capacity 625 lbs. CONCLUDE: USE... 0.38 dia 2.5 embed (inches) FAN COIL (MAX WT = 150 LBS) 2"x2"x10 GA X 2" LONG ANGLE (TYPICAL 4, ONE EACH CORNER) #10 x 3/4" SELF-TAPPING SCREW, ONE PER ANGLE

Engineer: BVC; DM 1/3/2022 Davidson MS HVAC

Small Duct Support

Calculation checks anchorage for small duct support from C/M-4.3

ZFA STRUCTURAL ENGINEERS Job #21650

Small Duct - Fp

Engineer: BVC; DM 1/3/2022

SMALL DUCT SUPPORT

CBC2019, ASCE 7-16 CHAPTER 11, 12, 13 SEISMIC DESIGN CRITERIA

Soil Site Class	D (by default)	Table 20.3-1	
Response Spectral Acc. (0.2 sec) Ss =	1.500g	= 150.00%g	Figure 22-1, 22-3, 22-5, and 22-6
Response Spectral Acc.(1.0 sec) S1 =	0.600g	= 60.00%g	Figure 22-2, 22-4, 22-5, and 22-6
Site Coefficient $F_a =$	1.200		Table 11.4-1
Site Coefficient $F_v =$	1.7		Table 11.4-2
Max Considered Earthquake Acc. S_{MS} =	F _a .S _s	= 1.800	(11.4-1)
Max Considered Earthquake Acc. $S_{M1} =$	F _v .S ₁	= 1.020	(11.4-2)
@ 5% Damped Design S_{DS} =	2/3(S _{MS})	= 1.200	(11.4-3)
S _{D1} =	2/3(S _{M1})	= 0.680	(11.4-4)
Building Risk Categories		Public hazard	Table 1.5-1
Design Category Consideration:	Flexible Di	aphragm	with dist. between seismic resisting system >40ft
Seismic Design Category for 0.1sec	D		
Seismic Design Category for 1.0sec	D		
S1 < .75g	NA	_	
Comply with Seismic Design Cate	gory D		

13.3 Seismic Demands on Nonstructural Components

Component Name: Small ductwork (CONSIDERED PER 8' SUPPORT SPCG)

Component Description: Ductwork, including in-line components, constructed of high- or limited-deformability materials with joints made by means other than welding or brazing

F _p =	0.4a _p S _{DS} V	V _p (1+2z/h)		S _{DS} = 1.200
-	(R _p	J/I _p)	-	(13.3-1)
$a_p = 2$	2.5	$R_p =$	6.0	T-13.5-1 or 13.6-1
$\Omega_{\rm o} = 2$	2.0			T-13.5-1 or 13.6-1
I _p = 1	I. O			13.1.3
z = 1	l1 ft	h =	11 ft	$F_{p} = 0.600 Wp$
Max F _p =	$1.6S_{DS}I_{p}W_{p}$	=	1.920Wp	(13.3-2)
Min F _p =	$0.3S_{DS}I_{p}W_{p}$	=	0.360Wp	(13.3-3)
$F_{p} = 0$).600 Wp			
$F_{p \text{ Anchorage to Concrete IF using }} \Omega_{o} = 1$	I.200 Wp			T-13.5-1 footnote b or 13.6-1 footnote c
$W_p =$	64.0	lb	(assumed 4 ps	f, 2 ft diameter)
$F_p =$	38.4	lb	(LRFD)	
$F_{p \text{ Anchorage to Concrete IF using }}\Omega_{o} =$	76.8	lb		

SMALL DUCT SUPPORT

Calculations for detail C/M-4.3. See also "Small Duct - Fp" calc.

small duct = 64 lb

From "Small Duct Fp" sheet:

F _{p, LRFD}	=	38.4	lb
$F_{p,ASD}$	=	26.9	lb

Incorporate Horizontal & Vertical Seismic Forces (ASD):

E _h	=	27	lbs	(EQ 12.4-3)
Ev	=	15	lbs	(EQ 12.4-4a)
using ASD load combination	tions:			
Load ₈	=	94	lbs	(2.4.5(8))
Load ₉	=	86	lbs	(2.4.5(9))
Load ₁₀	=	46	lbs	(2.4.5(10))
total load (total load (TL) =		Ibs G	OVERNS

Steel strap fasteners:

screws:	quantity	=	2				
	load/fastener	=	46.8	lb	(ASD) <mark>(</mark>	ise for shear load	
	dia	_	0.25	in	(from m	hech detail)	
		-	0.20				
	embed	=	3	ın	(from m	iech detail)	
						Design Method Allowable Stress Design (ASD)	~
check she	ar					Connection Type Lateral loading	~
CHECK SHE	ai					Fastener Type Lag Screw	~
						Loading Scenario Single Shear	~
che	ck using AWC co	nnec	tion cal	culato	or.	Main Member Type Douglas Fir-Larch	~
one				oulatt	511	Main Member Thickness 3.5 in.	~
						Load to Grain	
fe	estener canacity	_	160	lh		Side Member Type Steel	~
IC	asterier capacity	-	103	ID.	(AOD)	Side Member Thickness 20 gage	~
						Side Member: Angle of Load to Grain	
						Washer Thickness 0 in.	~
	CONCLUDE:					Nominal Diameter 1/4 in.	~
	DCR	=	0 28			Length 3 in.	~
	Don	. –	0.20			Load Duration Factor C_D = 1.6	~
	S	shear	OK			Wet Service Factor C_M = 1.0	*
						Temperature Factor C t = 1.0	~
						Connection Yield Mode	s
						Im 1310 lbs.	
						Is 221 lbs.	
						11 533 lbs. TIIm 547 lbs	_
						IIIs 169 lbs.	
						IV 239 lbs.	
						Adjusted ASD Capacity 169 lbs.	
	DE					Adjusted ASD Capacity 169 lbs.	
		2		J	(in share		
USE	<mark>0.25</mark> dia	3	empe	a	(inches	5)	

Engineer: BVC; DM 1/3/2022

Davidson MS HVAC

Check sheet metal strap:

ımed)
mech detail)
ımed 28g)
mech detail)

CONCLUDE: USE... 0.01 in. w DCR 0.19 Engineer: BVC; DM 1/3/2022 Davidson MS HVAC

Pipe Support

Calculation checks anchorage for pipe support from E/M-4.3

ZFA STRUCTURAL ENGINEERS Job #21650

Pipe Supp - Fp

Engineer: BVC; DM 1/3/2022

PIPE SUPPORT

CBC2019, ASCE 7-16 CHAPTER 11, 12, 13 SEISMIC DESIGN CRITERIA

Soil Site Class	D (by default)	Table 20.3-1	
Response Spectral Acc. (0.2 sec) Ss =	1.500g	= 150.00%g	Figure 22-1, 22-3, 22-5, and 22-6
Response Spectral Acc.(1.0 sec) S1 =	0.600g	= 60.00%g	Figure 22-2, 22-4, 22-5, and 22-6
Site Coefficient $F_a =$	1.200		Table 11.4-1
Site Coefficient $F_v =$	1.7		Table 11.4-2
Max Considered Earthquake Acc. S _{MS} =	$F_a.S_s$	= 1.800	(11.4-1)
Max Considered Earthquake Acc. $S_{M1} =$	F _v .S ₁	= 1.020	(11.4-2)
@ 5% Damped Design S_{DS} =	2/3(S _{MS})	= 1.200	(11.4-3)
S _{D1} =	2/3(S _{M1})	= 0.680	(11.4-4)
Building Risk Categories	III	Public hazard	Table 1.5-1
Design Category Consideration:	Flexible Di	iaphragm	with dist. between seismic resisting system >40ft
Seismic Design Category for 0.1sec	D		
Seismic Design Category for 1.0sec	D		
S1 < .75g	NA	_	
Comply with Seismic Design Cate	gory D]	

13.3 Seismic Demands on Nonstructural Components

Component Name: Pipe support (CONSIDERED PER 10' SUPPORT SPCG)

Component Description: Ductwork, including in-line components, constructed of high- or limited-deformability materials with joints made by means other than welding or brazing

F _p =	0.4a _p S _{DS} V	V _p (1+2z/h)		S _{DS} = 1.200
-	(R _p	₅ /I _p)	_	(13.3-1)
$a_p = 2$	2.5	R _p =	6.0	T-13.5-1 or 13.6-1
$\Omega_{o} = 2$	2.0			T-13.5-1 or 13.6-1
$I_p = 1$	1.0			13.1.3
z = 1	I1 ft	h =	= 11 ft	$F_{p} = 0.600 Wp$
Max F _p =	$1.6S_{DS}I_{p}W_{p}$	=	= 1.920Wp	(13.3-2)
Min F _p =	$0.3S_{DS}I_{p}W_{p}$	=	= 0.360Wp	(13.3-3)
$F_p = 0$	0.600 Wp			
$F_{p \text{ Anchorage to Concrete IF using }} \Omega_{o} = 1$	1.200 Wp			T-13.5-1 footnote b or 13.6-1 footnote c
$W_p =$	10.0	lb	(assumed 4 ps	f, 3" dia pipe)
F _p =	6.0	lb	(LRFD)	
$F_{p \text{ Anchorage to Concrete IF using }}\Omega_{O} =$	12.0	lb		

VERTICAL FAN COIL ANCHORAGE

Calculations for detail E/M-4.3. See also "Pipe Supp Fp" calc.

pipe weight = 10 lb

From "Pipe Supp Fp" sheet:

F _{p, LRFD}	= 6		lb
$F_{p, ASD}$	=	4.2	lb

Incorporate Horizontal & Vertical Seismic Forces (ASD):

E _h	=	4	lbs	(EQ 12.4-3)		
Ev	=	2	lbs	(EQ 12.4-4a)		
using ASD load combinations:						
Load ₈	=	15	lbs	(2.4.5(8))		
Load ₉	=	13	lbs	(2.4.5(9))		
Load ₁₀	=	7	lbs	(2.4.5(10))		
total load (TL) =		15	lbs G	OVERNS		

Loading:

CONCLUDE: by inspection, anchorage components can withstand a load <= 15 lbs

Page 38 of 38

ZFA STRUCTURAL ENGINEERS